Tuesday, August 26, 2008

Conclusion

The computing world has a lot to gain from neural networks. Their ability to learn by example makes them very flexible and powerful. Furthermore there is no need to devise an algorithm in order to perform a specific task; i.e. there is no need to understand the internal mechanisms of that task. They are also very well suited for real time systems because of their fast response and computational times which are due to their parallel architecture.

Neural networks also contribute to other areas of research such as neurology and psychology. They are regularly used to model parts of living organisms and to investigate the internal mechanisms of the brain.

Perhaps the most exciting aspect of neural networks is the possibility that some day 'consious' networks might be produced. There is a number of scientists arguing that consciousness’ is a 'mechanical' property and that 'consious' neural networks are a realistic possibility.
Finally, I would like to state that even though neural networks have a huge potential we will only get the best of them when they are integrated with computing, AI, fuzzy logic and related subjects.

Credit Evaluation

The HNC Company, founded by Robert Hecht-Nielsen, has developed several neural network applications. One of them is the Credit Scoring system which increases the profitability of the existing model up to 27%. The HNC neural systems were also applied to mortgage screening. A neural network automated mortgage insurance underwriting system was developed by the Nestor Company. This system was trained with 5048 applications of which 2597 were certified. The data related to property and borrower qualifications. In a conservative mode the system agreed on the underwriters on 97% of the cases. In the liberal model the system agreed 84% of the cases. This is system run on an Apollo DN3000 and used 250K memory while processing a case file in approximately 1 sec.

Marketing

There is a marketing application which has been integrated with a neural network system. The Airline Marketing Tactician (a trademark abbreviated as AMT) is a computer system made of various intelligent technologies including expert systems. A feed forward neural network is integrated with the AMT and was trained using back-propagation to assist the marketing control of airline seat allocations. The adaptive neural approach was amenable to rule expression. Additionally, the application's environment changed rapidly and constantly, which required a continuously adaptive solution. The system is used to monitor and recommend booking advice for each departure. Such information has a direct impact on the profitability of an airline and can provide a technological advantage for users of the system. [Hutchison & Stephens, 1987]

While it is significant that neural networks have been applied to this problem, it is also important to see that this intelligent technology can be integrated with expert systems and other approaches to make a functional system. Neural networks were used to discover the influence of undefined interactions by the various variables. While these interactions were not defined, they were used by the neural system to develop useful conclusions. It is also noteworthy to see that neural networks can influence the bottom line.

Neural Networks in business

Business is a diverted field with several general areas of specialization such as accounting or financial analysis. Almost any neural network application would fit into one business area or financial analysis. There is some potential for using neural networks for business purposes, including resource allocation and scheduling. There is also a strong potential for using neural networks for database mining that is, searching for patterns implicit within the explicitly stored information in databases. Most of the funded work in this area is classified as proprietary. Thus, it is not possible to report on the full extent of the work going on. Most work is applying neural networks, such as the Hopfield-Tank network for optimization and scheduling.

Instant Physician

An application developed in the mid-1980s called the "instant physician" trained an auto associative memory neural network to store a large number of medical records, each of which includes information on symptoms, diagnosis, and treatment for a particular case. After training, the net can be presented with input consisting of a set of symptoms; it will then find the full stored pattern that represents the "best" diagnosis and treatment.

Electronic noses

ANNs are used experimentally to implement electronic noses. Electronic noses have several potential applications in telemedicine. Telemedicine is the practice of medicine over long distances via a communication link. The electronic nose would identify odours in the remote surgical environment. These identified odours would then be electronically transmitted to another site where an door generation system would recreate them. Because the sense of smell can be an important sense to the surgeon, telesmell would enhance telepresent surgery.

Modeling and Diagnosing the Cardiovascular System

Neural Networks are used experimentally to model the human cardiovascular system. Diagnosis can be achieved by building a model of the cardiovascular system of an individual and comparing it with the real time physiological measurements taken from the patient. If this routine is carried out regularly, potential harmful medical conditions can be detected at an early stage and thus make the process of combating the disease much easier.

A model of an individual's cardiovascular system must mimic the relationship among physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and breathing rate) at different physical activity levels. If a model is adapted to an individual, then it becomes a model of the physical condition of that individual. The simulator will have to be able to adapt to the features of any individual without the supervision of an expert. This calls for a neural network.

Another reason that justifies the use of ANN technology is the ability of ANNs to provide sensor fusion which is the combining of values from several different sensors. Sensor fusion enables the ANNs to learn complex relationships among the individual sensor values, which would otherwise be lost if the values were individually analyzed. In medical modeling and diagnosis, this implies that even though each sensor in a set may be sensitive only to a specific physiological variable, ANNs are capable of detecting complex medical conditions by fusing the data from the individual biomedical sensors.

Neural networks in medicine

Artificial Neural Networks (ANN) is currently a 'hot' research area in medicine and it is believed that they will receive extensive application to biomedical systems in the next few years. At the moment, the research is mostly on modeling parts of the human body and recognizing diseases from various scans (e.g. cardiograms, CAT scans, ultrasonic scans, etc.).

Neural networks are ideal in recognizing diseases using scans since there is no need to provide a specific algorithm on how to identify the disease. Neural networks learn by example so the details of how to recognize the disease are not needed. What is needed is a set of examples that are representative of all the variations of the disease. The quantity of examples is not as important as the 'quantity'. The examples need to be selected very carefully if the system is to perform reliably and efficiently.

Applications of neural networks

Neural Networks in Practice:
Given this description of neural networks and how they work, what real world applications are they suited for? Neural networks have broad applicability to real world business problems. In fact, they have already been successfully applied in many industries.
Since neural networks are best at identifying patterns or trends in data, they are well suited for prediction or forecasting needs including:

Sales forecasting.
Industrial process control.
Customer research.
Data validation.
Risk management.
Target marketing.

But to give you some more specific examples; ANN are also used in the following specific paradigms: recognition of speakers in communications; diagnosis of hepatitis; recovery of telecommunications from faulty software; interpretation of multimeaning Chinese words; undersea mine detection; texture analysis; three-dimensional object recognition; hand-written word recognition; and facial recognition.

The Back-Propagation Algorithm

In order to train a neural network to perform some task, we must adjust the weights of each unit in such a way that the error between the desired output and the actual output is reduced. This process requires that the neural network compute the error derivative of the weights (EW). In other words, it must calculate how the error changes as each weight is increased or decreased slightly. The back propagation algorithm is the most widely used method for determining the EW.

The back-propagation algorithm is easiest to understand if all the units in the network are linear. The algorithm computes each EW by first computing the EA, the rate at which the error changes as the activity level of a unit is changed. For output units, the EA is simply the difference between the actual and the desired output. To compute the EA for a hidden unit in the layer just before the output layer, we first identify all the weights between that hidden unit and the output units to which it is connected. We then multiply those weights by the EAs of those output units and add the products. This sum equals the EA for the chosen hidden unit. After calculating all the EAs in the hidden layer just before the output layer, we can compute in like fashion the EAs for other layers, moving from layer to layer in a direction opposite to the way activities propagate through the network. This is what gives back propagation its name. Once the EA has been computed for a unit, it is straight forward to compute the EW for each incoming connection of the unit. The EW is the product of the EA and the activity through the incoming connection.

Note that for non-linear units, (see Appendix C) the back-propagation algorithm includes an extra step. Before back-propagating, the EA must be converted into the EI, the rate at which the error changes as the total input received by a unit is changed.

An Example to illustrate the above teaching procedure:

Assume that we want a network to recognize hand-written digits. We might use an array of, say, 256 sensors, each recording the presence or absence of ink in a small area of a single digit. The network would therefore need 256 input units (one for each sensor), 10 output units (one for each kind of digit) and a number of hidden units.

For each kind of digit recorded by the sensors, the network should produce high activity in the appropriate output unit and low activity in the other output units.
To train the network, we present an image of a digit and compare the actual activity of the 10 output units with the desired activity. We then calculate the error, which is defined as the square of the difference between the actual and the desired activities. Next we change the weight of each connection so as to reduce the error. We repeat this training process for many different images of each different images of each kind of digit until the network classifies every image correctly.

To implement this procedure we need to calculate the error derivative for the weight (EW) in order to change the weight by an amount that is proportional to the rate at which the error changes as the weight is changed. One way to calculate the EW is to perturb a weight slightly and observe how the error changes. But that method is inefficient because it requires a separate perturbation for each of the many weights.

Another way to calculate the EW is to use the Back-propagation algorithm which is described below, and has become nowadays one of the most important tools for training neural networks. It was developed independently by two teams, one (Fogelman-Soulie, Gallinari and Le Cun) in France, the other (Rumelhart, Hinton and Williams) in U.S.

Transfer Function

The behaviour of an ANN (Artificial Neural Network) depends on both the weights and the input-output function (transfer function) that is specified for the units. This function typically falls into one of three categories:
Linear (or ramp)
Threshold
Sigmoid
For linear units, the output activity is proportional to the total weighted output.

For threshold units, the output are set at one of two levels, depending on whether the total input is greater than or less than some threshold value.

For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid units bear a greater resemblance to real neuron’s than do linear or threshold units, but all three must be considered rough approximations.

To make a neural network that performs some specific task, we must choose how the units are connected to one another (see figure 4.1), and we must set the weights on the connections appropriately. The connections determine whether it is possible for one unit to influence another. The weights specify the strength of the influence.
We can teach a three-layer network to perform a particular task by using the following procedure:
1. We present the network with training examples, which consist of a pattern of activities for the input units together with the desired pattern of activities for the output units.
2. We determine how closely the actual output of the network matches the desired output.
3.We change the weight of each connection so that the network produces a better approximation of the desired output.

The Learning Process

The memorization of patterns and the subsequent response of the network can be categorized into two general paradigms:





Associative Mapping:in which the network learns to produce a particular pattern on the set of input units whenever another particular pattern is applied on the set of input units. The associative mapping can generally be broken down into two mechanisms:
Auto-association: an input pattern is associated with itself and the states of input and output units coincide. This is used to provide pattern competition, i.e. to produce a pattern whenever a portion of it or a distorted pattern is presented. In the second case, the network actually stores pairs of patterns building an association between two sets of patterns.
Hetero-association: is related to two recall mechanisms:



Nearest-neighbour recall, where the output pattern produced corresponds to the input pattern stored, which is closest to the pattern presented, and
Interpolative recall, where the output pattern is a similarity dependent interpolation of the patterns stored corresponding to the pattern presented. Yet another paradigm, which is a variant associative mapping, is classification, ie when there is a fixed set of categories into which the input patterns are to be classified.

Regularity Detection:in which units learn to respond to particular properties of the input patterns. Whereas in associative mapping the network stores the relationships among patterns, in regularity detection the response of each unit has a particular 'meaning'. This type of learning mechanism is essential for feature discovery and knowledge representation.



Every neural network possesses knowledge which is contained in the values of the connections weights. Modifying the knowledge stored in the network as a function of experience implies a learning rule for changing the values of the weights.












Information is stored in the weight matrix W of a neural network. Learning is the determination of the weights. Following the way learning is performed, we can distinguish two major categories of neural networks:

Fixed networks: in which the weights cannot be changed, i.e. dW/dt=0. In such networks, the weights are fixed a priori according to the problem to solve.
Adaptive networks: which are able to change their weights, i.e. dW/dt not= 0.

All learning methods used for adaptive neural networks can be classified into two major categories:
Supervised learning: which incorporates an external teacher, so that each output unit is told what its desired response to input signals ought to be. During the learning process global information may be required. Paradigms of supervised learning include error-correction learning, reinforcement learning and stochastic learning.Important issue concerning supervised learning is the problem of error convergence, i.e. the minimization of error between the desired and computed unit values. The aim is to determine a set of weights which minimizes the error. One well-known method, which is common to many learning paradigms, is the least mean square (LMS) convergence.
Unsupervised learning: uses no external teacher and is based upon only local information. It is also referred to as self-organization, in the sense that it self-organizes data presented to the network and detects their emergent collective properties. Paradigms of unsupervised learning are Hebbian learning and competitive learning.Ano2.2 from Human Neurons to Artificial Neuron Esther aspect of learning concerns the distinction or not of a separate phase, during which the network is trained, and a subsequent operation phase. We say that a neural network learns off-line if the learning phase and the operation phase are distinct. A neural network learns on-line if it learns and operates at the same time. Usually, supervised learning is performed off-line, whereas unsupervised learning is performed on-line.