Tuesday, August 26, 2008
Conclusion
Neural networks also contribute to other areas of research such as neurology and psychology. They are regularly used to model parts of living organisms and to investigate the internal mechanisms of the brain.
Perhaps the most exciting aspect of neural networks is the possibility that some day 'consious' networks might be produced. There is a number of scientists arguing that consciousness’ is a 'mechanical' property and that 'consious' neural networks are a realistic possibility.
Finally, I would like to state that even though neural networks have a huge potential we will only get the best of them when they are integrated with computing, AI, fuzzy logic and related subjects.
Credit Evaluation
Marketing
While it is significant that neural networks have been applied to this problem, it is also important to see that this intelligent technology can be integrated with expert systems and other approaches to make a functional system. Neural networks were used to discover the influence of undefined interactions by the various variables. While these interactions were not defined, they were used by the neural system to develop useful conclusions. It is also noteworthy to see that neural networks can influence the bottom line.
Neural Networks in business
Instant Physician
Electronic noses
Modeling and Diagnosing the Cardiovascular System
A model of an individual's cardiovascular system must mimic the relationship among physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and breathing rate) at different physical activity levels. If a model is adapted to an individual, then it becomes a model of the physical condition of that individual. The simulator will have to be able to adapt to the features of any individual without the supervision of an expert. This calls for a neural network.
Another reason that justifies the use of ANN technology is the ability of ANNs to provide sensor fusion which is the combining of values from several different sensors. Sensor fusion enables the ANNs to learn complex relationships among the individual sensor values, which would otherwise be lost if the values were individually analyzed. In medical modeling and diagnosis, this implies that even though each sensor in a set may be sensitive only to a specific physiological variable, ANNs are capable of detecting complex medical conditions by fusing the data from the individual biomedical sensors.
Neural networks in medicine
Neural networks are ideal in recognizing diseases using scans since there is no need to provide a specific algorithm on how to identify the disease. Neural networks learn by example so the details of how to recognize the disease are not needed. What is needed is a set of examples that are representative of all the variations of the disease. The quantity of examples is not as important as the 'quantity'. The examples need to be selected very carefully if the system is to perform reliably and efficiently.
Applications of neural networks
Given this description of neural networks and how they work, what real world applications are they suited for? Neural networks have broad applicability to real world business problems. In fact, they have already been successfully applied in many industries.
Since neural networks are best at identifying patterns or trends in data, they are well suited for prediction or forecasting needs including:
Sales forecasting.
Industrial process control.
Customer research.
Data validation.
Risk management.
Target marketing.
But to give you some more specific examples; ANN are also used in the following specific paradigms: recognition of speakers in communications; diagnosis of hepatitis; recovery of telecommunications from faulty software; interpretation of multimeaning Chinese words; undersea mine detection; texture analysis; three-dimensional object recognition; hand-written word recognition; and facial recognition.
The Back-Propagation Algorithm
The back-propagation algorithm is easiest to understand if all the units in the network are linear. The algorithm computes each EW by first computing the EA, the rate at which the error changes as the activity level of a unit is changed. For output units, the EA is simply the difference between the actual and the desired output. To compute the EA for a hidden unit in the layer just before the output layer, we first identify all the weights between that hidden unit and the output units to which it is connected. We then multiply those weights by the EAs of those output units and add the products. This sum equals the EA for the chosen hidden unit. After calculating all the EAs in the hidden layer just before the output layer, we can compute in like fashion the EAs for other layers, moving from layer to layer in a direction opposite to the way activities propagate through the network. This is what gives back propagation its name. Once the EA has been computed for a unit, it is straight forward to compute the EW for each incoming connection of the unit. The EW is the product of the EA and the activity through the incoming connection.
Note that for non-linear units, (see Appendix C) the back-propagation algorithm includes an extra step. Before back-propagating, the EA must be converted into the EI, the rate at which the error changes as the total input received by a unit is changed.
An Example to illustrate the above teaching procedure:
For each kind of digit recorded by the sensors, the network should produce high activity in the appropriate output unit and low activity in the other output units.
To train the network, we present an image of a digit and compare the actual activity of the 10 output units with the desired activity. We then calculate the error, which is defined as the square of the difference between the actual and the desired activities. Next we change the weight of each connection so as to reduce the error. We repeat this training process for many different images of each different images of each kind of digit until the network classifies every image correctly.
To implement this procedure we need to calculate the error derivative for the weight (EW) in order to change the weight by an amount that is proportional to the rate at which the error changes as the weight is changed. One way to calculate the EW is to perturb a weight slightly and observe how the error changes. But that method is inefficient because it requires a separate perturbation for each of the many weights.
Another way to calculate the EW is to use the Back-propagation algorithm which is described below, and has become nowadays one of the most important tools for training neural networks. It was developed independently by two teams, one (Fogelman-Soulie, Gallinari and Le Cun) in France, the other (Rumelhart, Hinton and Williams) in U.S.
Transfer Function
Linear (or ramp)
Threshold
Sigmoid
For linear units, the output activity is proportional to the total weighted output.
For threshold units, the output are set at one of two levels, depending on whether the total input is greater than or less than some threshold value.
For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid units bear a greater resemblance to real neuron’s than do linear or threshold units, but all three must be considered rough approximations.
To make a neural network that performs some specific task, we must choose how the units are connected to one another (see figure 4.1), and we must set the weights on the connections appropriately. The connections determine whether it is possible for one unit to influence another. The weights specify the strength of the influence.
We can teach a three-layer network to perform a particular task by using the following procedure:
1. We present the network with training examples, which consist of a pattern of activities for the input units together with the desired pattern of activities for the output units.
2. We determine how closely the actual output of the network matches the desired output.
3.We change the weight of each connection so that the network produces a better approximation of the desired output.
The Learning Process
Associative Mapping:in which the network learns to produce a particular pattern on the set of input units whenever another particular pattern is applied on the set of input units. The associative mapping can generally be broken down into two mechanisms:
Auto-association: an input pattern is associated with itself and the states of input and output units coincide. This is used to provide pattern competition, i.e. to produce a pattern whenever a portion of it or a distorted pattern is presented. In the second case, the network actually stores pairs of patterns building an association between two sets of patterns.
Hetero-association: is related to two recall mechanisms:
Nearest-neighbour recall, where the output pattern produced corresponds to the input pattern stored, which is closest to the pattern presented, and
Interpolative recall, where the output pattern is a similarity dependent interpolation of the patterns stored corresponding to the pattern presented. Yet another paradigm, which is a variant associative mapping, is classification, ie when there is a fixed set of categories into which the input patterns are to be classified.
Regularity Detection:in which units learn to respond to particular properties of the input patterns. Whereas in associative mapping the network stores the relationships among patterns, in regularity detection the response of each unit has a particular 'meaning'. This type of learning mechanism is essential for feature discovery and knowledge representation.
Every neural network possesses knowledge which is contained in the values of the connections weights. Modifying the knowledge stored in the network as a function of experience implies a learning rule for changing the values of the weights.
Information is stored in the weight matrix W of a neural network. Learning is the determination of the weights. Following the way learning is performed, we can distinguish two major categories of neural networks:
Fixed networks: in which the weights cannot be changed, i.e. dW/dt=0. In such networks, the weights are fixed a priori according to the problem to solve.
Adaptive networks: which are able to change their weights, i.e. dW/dt not= 0.
All learning methods used for adaptive neural networks can be classified into two major categories:
Supervised learning: which incorporates an external teacher, so that each output unit is told what its desired response to input signals ought to be. During the learning process global information may be required. Paradigms of supervised learning include error-correction learning, reinforcement learning and stochastic learning.Important issue concerning supervised learning is the problem of error convergence, i.e. the minimization of error between the desired and computed unit values. The aim is to determine a set of weights which minimizes the error. One well-known method, which is common to many learning paradigms, is the least mean square (LMS) convergence.
Unsupervised learning: uses no external teacher and is based upon only local information. It is also referred to as self-organization, in the sense that it self-organizes data presented to the network and detects their emergent collective properties. Paradigms of unsupervised learning are Hebbian learning and competitive learning.Ano2.2 from Human Neurons to Artificial Neuron Esther aspect of learning concerns the distinction or not of a separate phase, during which the network is trained, and a subsequent operation phase. We say that a neural network learns off-line if the learning phase and the operation phase are distinct. A neural network learns on-line if it learns and operates at the same time. Usually, supervised learning is performed off-line, whereas unsupervised learning is performed on-line.
Thursday, June 19, 2008
Network layers
The activity of the input units represents the raw information that is fed into the network.
The activity of each hidden unit is determined by the activities of the input units and the weights on the connections between the input and the hidden units.
The behavior of the output units depends on the activity of the hidden units and the weights between the hidden and output units.
This simple type of network is interesting because the hidden units are free to construct their own representations of the input. The weights between the input and hidden units determine when each hidden unit is active, and so by modifying these weights, a hidden unit can choose what it represents.
We also distinguish single-layer and multi-layer architectures. The single-layer organisation, in which all units are connected to one another, constitutes the most general case and is of more potential computational power than hierarchically structured multi-layer organizations. In multi-layer networks, units are often numbered by layer, instead of following a global numbering.
Architecture of neural networks
Feed-forward ANNs (figure 1) allow signals to travel one way only; from input to output. There is no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-forward ANNs tend to be straight forward networks that associate inputs with outputs. They are extensively used in pattern recognition. This type of organisation is also referred to as bottom-up or top-down.
Feedback networks
Feedback networks (figure 1) can have signals traveling in both directions by introducing loops in the network. Feedback networks are very powerful and can get extremely complicated. Feedback networks are dynamic; their 'state' is changing continuously until they reach an equilibrium point. They remain at the equilibrium point until the input changes and a new equilibrium needs to be found. Feedback architectures are also referred to as interactive or recurrent, although the latter term is often used to denote feedback connections in single-layer organizations.
A more complicated neuron
In mathematical terms, the neuron fires if and only if;
X1W1 + X2W2 + X3W3 + ... > T The addition of input weights and of the threshold makes this neuron a very flexible and powerful one. The MCP neuron has the ability to adapt to a particular situation by changing its weights and/or threshold. Various algorithms exist that cause the neuron to 'adapt'; the most used ones are the Delta rule and the back error propagation. The former is used in feed-forward networks and the latter in feedback networks.
Firing rules
A simple firing rule can be implemented by using Hamming distance technique. The rule goes as follows:
Take a collection of training patterns for a node, some of which cause it to fire (the 1-taught set of patterns) and others which prevent it from doing so (the 0-taught set). Then the patterns not in the collection cause the node to fire if, on comparison, they have more input elements in common with the 'nearest' pattern in the 1-taught set than with the 'nearest' pattern in the 0-taught set. If there is a tie, then the pattern remains in the undefined state.
An engineering approach
An artificial neuron is a device with many inputs and one output. The neuron has two modes of operation; the training mode and the using mode. In the training mode, the neuron can be trained to fire (or not), for particular input patterns. In the using mode, when a taught input pattern is detected at the input, its associated output becomes the current output. If the input pattern does not belong in the taught list of input patterns, the firing rule is used to determine whether to fire or not.
Human and Artificial Neurones - investigating the similarities
Much is still unknown about how the brain trains itself to process information, so theories abound. In the human brain, a typical neuron collects signals from others through a host of fine structures called dendrites. The neuron sends out spikes of electrical activity through a long, thin stand known as an axon, which splits into thousands of branches. At the end of each branch, a structure called a synapse converts the activity from the axon into electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit or excite activity in the connected neurones. When a neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes.
Neural networks versus conventional computers.
Neural networks process information in a similar way the human brain does. The network is composed of a large number of highly interconnected processing elements (neurones) working in parallel to solve a specific problem. Neural networks learn by example. They cannot be programmed to perform a specific task. The examples must be selected carefully otherwise useful time is wasted or even worse the network might be functioning incorrectly. The disadvantage is that because the network finds out how to solve the problem by itself, its operation can be unpredictable.
On the other hand, conventional computers use a cognitive approach to problem solving; the way the problem is to solved must be known and stated in small unambiguous instructions. These instructions are then converted to a high level language program and then into machine code that the computer can understand. These machines are totally predictable; if anything goes wrong is due to a software or hardware fault.
Neural networks and conventional algorithmic computers are not in competition but complement each other. There are tasks are more suited to an algorithmic approach like arithmetic operations and tasks that are more suited to neural networks. Even more, a large number of tasks, require systems that use a combination of the two approaches (normally a conventional computer is used to supervise the neural network) in order to perform at maximum efficiency.
Why use neural networks?
1. Adaptive learning: An ability to learn how to do tasks based on the data given for training or initial experience.
2. Self-Organization: An ANN can create its own organisation or representation of the information it receives during learning time.
3. Real Time Operation: ANN computations may be carried out in parallel, and special hardware devices are being designed and manufactured which take advantage of this capability.
4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads to the corresponding degradation of performance. However, some network capabilities may be retained even with major network damage.
Historical background
Many important advances have been boosted by the use of inexpensive computer emulations. Following an initial period of enthusiasm, the field survived a period of frustration and disrepute. During this period when funding and professional support was minimal, important advances were made by relatively few researchers. These pioneers were able to develop convincing technology which surpassed the limitations identified by Minsky and Papert. Minsky and Papert, published a book (in 1969) in which they summed up a general feeling of frustration (against neural networks) among researchers, and was thus accepted by most without further analysis. Currently, the neural network field enjoys a resurgence of interest and a corresponding increase in funding.
The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter Pits. But the technology available at that time did not allow them to do too much