The previous neuron doesn't do anything that conventional computers don't do already. A more sophisticated neuron (figure 2) is the McCulloch and Pitts model (MCP). The difference from the previous model is that the inputs are ‘weighted’; the effect that each input has at decision making is dependent on the weight of the particular input. The weight of an input is a number which when multiplied with the input gives the weighted input. These weighted inputs are then added together and if they exceed a pre-set threshold value, the neuron fires. In any other case the neuron does not fire.
In mathematical terms, the neuron fires if and only if;
X1W1 + X2W2 + X3W3 + ... > T The addition of input weights and of the threshold makes this neuron a very flexible and powerful one. The MCP neuron has the ability to adapt to a particular situation by changing its weights and/or threshold. Various algorithms exist that cause the neuron to 'adapt'; the most used ones are the Delta rule and the back error propagation. The former is used in feed-forward networks and the latter in feedback networks.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment